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A new model is proposed to represent non-Gaussian stationary processes and develop
Monte Carlo simulation algorithms for generating sample paths of non-Gaussian processes.
The model is based on a class of non-Gaussian processes, the class of conditional Gaussian
processes. Two representations are considered for these processes. The "rst representation is
based on a randomized version of the classical spectral density function. The second
representation uses the output of a linear "lter with random coe$cients subjected to
Gaussian noise to de"ne conditional Gaussian processes. The proposed model, its
representations, and corresponding Monte Carlo simulation algorithms are illustrated by
examples involving non-Gaussian random variables and processes. It is shown that the
proposed model can match any second moment properties but, generally, can only "t
approximately a speci"ed marginal distribution.

( 2001 Academic Press
1. INTRODUCTION

Most action on physical systems, material properties, stock prices, and other time series
follow non-Gaussian distributions [1]. It is di$cult to develop simple analytical models for
a non-Gaussian process with an arbitrary probability law. Most current non-Gaussian
models match only the second moment properties and the marginal distribution of a target
non-Gaussian process, for example, the translation, the di!usion, and the "ltered Poisson
processes.

The translation process is a memoryless transformation of a Gaussian process with mean
zero, variance one, and correlation function depending on the correlation function of the
target non-Gaussian process. The translation process can follow any marginal distribution
but not any correlation function. The correlation function of the underlying Gaussian
process can be obtained by an iteration algorithm that converges if there exists a translation
process with the required properties. Conditions for the existence of a translation process
with a speci"ed marginal distribution and covariance function are given in reference [1].
Di!usion processes can also be used to model non-Gaussian processes. Except for
non-Gaussian processes with an exponential correlation function, the determination of the
drift and the di!usion coe$cients of a di!usion process matching a target marginal
distribution and second moment properties is impractical [1, 2]. Filtered Poisson processes
have been used less frequently in applications to model non-Gaussian processes [1].

The non-Gaussian models in this paper belong to the class of conditional Gaussian
processes. The sub-Gaussian process, that is, a Gaussian process scaled by an a-stable
random variable, is a member of this class [3]. The sub-Gaussian process is not ergodic
0022-460X/01/390723#13 $35.00/0 ( 2001 Academic Press



724 M. GRIGORIU
because its sample and ensemble properties di!er. The lack of ergodicity is a common
characteristic of the conditional Gaussian processes. The model in this paper may be viewed
as a generalized version of the sub-Gaussian process. It is shown that the proposed model
can have any second moment properties but cannot match exactly all marginal
distributions. The model can only match a number of prescribed higher order moments. In
contrast, the translation process can "t any marginal distribution but not an arbitrary
correlation function. Examples are used to demonstrate the features of the proposed
conditional Gaussian process; they illustrate the calibration of this process to target
properties, and show its use in Monte Carlo simulation.

2. DEFINITION AND PROPERTIES

Let MG(l, z), l*0, z3DN be a [0,R)-valued function de"ned on [0,R)]D, where D is
a subset of Rd it is assumed that :=

0
G(l, z) dl(R for each z3D. Hence, G( ) , z) can be the

one-sided spectral density function of a weakly stationary process for each z3D.
Let (X

1
, F

1
, P

1
) be a probability space and

Z : (X
1
, F

1
)P(D, B (D)) (1)

denotes a measurable function, where B (D) is the Borel p-"eld on D. Hence, G( ), Z(u
1
)) has

the properties of a one-sided spectral density function of a weakly stationary process for
each u

1
3X

1
. Consider another probability space, (X

2
, F

2
, P

2
), and the mapping

X : [0,R)](X
1
]X

2
)PR (2)

de"ned by

X(t, u
1
, u

2
)"P

=

0

[cos(lt) d; (l, u
1
, u

2
)#sin(lt) d<(l, u

1
, u

2
)], (3)

where

d;(l, u
1
, u

2
)"JG(l, Z(u

1
)) d;I (l, u

2
), d<(l, u

1
, u

2
)"JG(l, Z(u

1
)) d<I (l, u

2
), (4)

;I and <I are real-valued process on the probability space (X
2
, F

2
, P

2
) such that

E[d;I (l, u
2
)]"E[d<I (l, u

2
)]"0,

E[d;I (l, u
2
) d;I (j, u

2
)]"E[d<I (l, u

2
) d<I (j, u

2
)]"d(l!j) dl,

E[d;I (l, u
2
) d<I (j, u

2
)]"0 (5)

and d(m)"1 for m"0 and is zero otherwise.

(1) If G is measurable, that is, it is a random variable on (X
1
, F

1
, P

1
), the mapping

(t, u
1
, u

2
)CX(t, u

1
, u

2
) is a stochastic process on the product probability space (X

1
]X

2
,

F
1
]F

2
, P

1
]P

2
).

Proof. The functions

(u
1
, u

2
)CJG(l, Z(u

1
)) cos(lt) d;I (l, u

2
) and

(u
1
, u

2
)CJG(l, Z(u

1
)) sin(lt) d<I (l, u

2
)
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are measurable in the arguments (u
1
, u

2
) for each (t, l) by the measurability of G,;I , and<I .

Since summation and integration preserve measurability, X is measurable in (u
1
, u

2
) for

each t*0 so that it is a stochastic process on the product space. K

(2) If (1);I "B
1
and<I "B

2
, where B

1
and B

2
are independent standard Brownian motions

starting at zero, (2) G has continuous samples, and (3) the processes B
i
, i"1, 2, are

independent of G, then the mapping (t, u
1
, u

2
)CX (t, u

1
, u

2
) de,ned by equations (2)}(5) has

a measurable version.

Proof. Suppose that Z is a constant in Rd so that g (l)"G(l, Z) is a [0,R)-valued
deterministic function such that :=

0
g (l) dl(R. The function g can be the spectral density

of a weakly stationary process. If this process is continuous in probability, then it has
a measurable version, this is, a version, that is measurable jointly in l and u

2
(reference [3],

Exercise 9)15 (i), p. 443).
If ;I and <I are two independent Brownian motions and G has continuous samples as

assumed, the resulting version,

X(t, u
1
, u

2
)"P

=

0

JG(l, Z(u
1
)) [cos(lt) dB

1
(l, u

2
)#sin(lt) dB

2
(l, u

2
)] (6)

of X has continuous samples so that it is measurable in (t, u
1
, u

2
) (reference [5], Exercise

9)15 (ii), p. 443). K

(3) ¹he second moment properties of X are

k"E[X(t)]"0, c (q)"E[X(t)X(t#q)]"P
=

0

E[G(l, Z)] cos(lt) dl, (7)

where the expectation E[G(l, Z)] is with respect to the Rd-valued random variable Z.

Proof. The expectation, E[X(t)]"EME[X(t) D Z]N, is zero because E[X(t) DZ]"0 by the
properties of ; and < [equation (5)]. The covariance function, E[X(t)X(t#q)], of this
process can be calculated from EME[X(t)X(t#q) D Z]N and

E[X(t)X(t#q) DZ]

"ECP
=

0

(cos(lt) d;(l)#sin(lt) d<(l)) P
=

0

(cos(j(t#q)) d;(j)#sin(j(t#q)) d<(j))D
"P

=

0

(cos(lt) cos(l(t#q)) E[d;(l)2]#sin(lt) sin(l(t#q)) E[d<(l)2])

"P
=

0

G(l, Z) cos(lq) dl (8)

by the properties of; and< in equation (5), the de"nition of the mean square integral, and
properties of the expectation operator. K

(4) X is a weakly stationary process that can have any second moment properties.

Proof. This property is a direct consequence of equation (7). It is su$cient to select G such
that its expectation matches the target spectral density function. K
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(5) If ;I and <I are Gaussian processes, the conditional process X DZ is also Gaussian with
mean zero and covariance function, E[X(t)X(t#q) D Z], equal to :=

0
G(l, Z) cos(lq) dl.

Proof. The covariance function of X D Z is given by equation (8). That X D Z is Gaussian
follows from equations (3)}(5). K

(6) If ;I and <I are Gaussian processes, the characteristic function of the random variable
X(t) is

u(u, t)"u (u)"EGexpC!
u2

2 P
=

0

G (l, Z) dlDH (9)

for each t*0.

Proof. The conditional random variable X(t) DZ follows a Gaussian distribution with mean
zero and variance :=

0
G(l, Z) dl at all times t*0. Hence, its characteristic function is

E[eJ!1uX(t) D Z]"expC!
u2

2 P
=

0

G(l, Z) dlD
by properties of Gaussian variables. The expectation with respect to Z gives equation
(9). K

(7) If;I and <I are Gaussian processes, the marginal density of X is symmetric about zero so
that its odd order moments are zero. ¹he even order moments of X are

E[X(t)2q]"
(2q)!

2qq!
ECAP

=

0

G(l, Z) dlB
q

D, q*1. (10)

Proof. Since X(t) DZ is a Gaussian variable for each t*0 with mean zero and variance
:=
0

G(l, Z) dl, its odd order moments are zero. Hence, the density of X(t) must be symmetric
about zero, consistent with equation (9) showing that the characteristic function of X(t) is
real-valued. The even order moments of X(t) are

E[X(t)2q DZ]"
(2q)!

2qq! AP
=

0

G(l, Z) dlB
q
, q*1. (11)

by properties of Gaussian variables [1]. K

(8) If ;I and <I are Gaussian processes, X is strictly stationary.

Proof. The conditional vector

(X(t
1
),2,X(t

n
)) D Z

is Gaussian for any integer n*1 and times 0)t
1
(2(t

n
and has the same distribution

as the vector

(X(t
1
#q),2, X(t

n
#q)) DZ,

where q denotes an arbitrary time shift. The stated property follows by eliminating the
condition of Z. K

The process X de"ned by equations (1)} (5) with;I and <3 Gaussian processes de"nes the
class of conditional Gaussian process. Processes in this class are used to model non-Gaussian
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stationary processes de"ned by their second moment properties and marginal distribution
and develop algorithms for generating samples of non-Gaussian processes.

3. CONDITIONAL GAUSSIAN PROCESSES

Two representations are considered for the members of the class of conditional Gaussian
processes, processes with a random spectral density function and processes de"ned as the
output of a linear "lter with random coe$cients subjected to a Gaussian input. These
representations are consistent with the de"nition of the conditional Gaussian processes in
the previous section and provide alternative implementations of the same concept.

3.1. RANDOM SPECTRAL DENSITY

Let

G(l, Z)"
d
+
i/1

Z
i
u

i
(l) , l*0, (12)

where u
i
are [0,R]-valued functions such that :=

0
u
i
(l) dl(R and the random variables Z

i
are positive so that the range, D, of Z in equation (1) must be a subset of [0,R)d. Hence,
G(l, Z) is a positive random variable for all l*0 and :=

0
G(l, Z) dl(R.

The function G(l, Z(u
1
))"+d

i/1
Z

i
(u

1
)u

i
(l) has the properties of the one-sided spectral

density for each u
1
3X

1
. For a "xed u

1
3X

1
, de"ne the conditional process X D Z(u

1
) to be

a stationary Gaussian process with mean zero and one-sided spectral density G(l, Z(u
1
)).

This conditional process can be approximated by

X
n
(t, u

1
, u

2
)"

n
+
k/1

C
k
(u

1
) [A

k
(u

2
) cos(l

k
t)#B

k
(u

2
) sin(l

k
t)], (13)

where A
k
, B

k
are the independent standard Gaussian variables de"ned on the probability

space (X
2
, F

2
, P

2
), that is, Gaussian variables with mean zero and variance one, l

k
denotes

the central points of a partition, I
k
, of the frequency axis, that is, X

k
I
k
gives the frequency

band of G(l, Z) such that I
k
W I

l
"0 for kOl, and C

k
(u

1
)"(:

Ik
G(l, Z(u

1
)) dl)1@2 are

dependent random variables on (X
1
, F

1
, P

1
). For a "xed u

1
3X

1
, X

n
, that is, the conditional

process X
n
DZ(u

1
), is Gaussian. However, X

n
is not a Gaussian process.

3.2. LINEAR FILTER WITH RANDOM COEFFICIENTS

Let X be the stationary solution of the di!erential equation

L[X(t)]">(t), t*0 (14)

for some initial conditions, where

L"

m
+
k/0

m
k
(Z)

dm~k

dtm~k
(15)

is a di!erential operator of order m with random coe$cients de"ned by the measurable
mappings u

1
C m

k
(Z(u

1
)), k"1,2, m. The input, >, is a stationary Gaussian process with
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mean zero and one-sided spectral density g
y
. Conditions for the existence of a stationary

solution of equation (14) can be found in references [4, 5].
Let h(l, Z(u

1
)) be the transfer function of L for a sample, Z(u

1
), of Z. The corresponding

one-sided spectral density of the stationary solution, X(t) DZ (u
1
), is

G(l, Z(u
1
))"Dh(l, Z(u

1
))D2g

y
(l), (16)

provided that this solution exists. This process is Gaussian for a "xed u
1
. However, X is

a non-Gaussian process if the condition on Z is eliminated.

3.3. MONTE CARLO SIMULATION

The generation of samples of X involves three steps:

(1) Generate a sample, Z(u
1
), of Z based on the distribution of this random variable.

(2) Calculate the spectral density, G(), Z(u
1
)), corresponding to Z(u

1
). The conditional

process, X D Z(u
1
), is Gaussian.

(3) Generate a sample path, X ( ),u
1
, u

2
), of the conditional process X DZ(u

1
). The

generation of X (), u
1
, u

2
), can be based on the spectral density, G(l, Z(u

1
)), given by

equation (12) or equation (16) and the representation of X in equation (13). Current
algorithms for generating sample paths of a stationary Gaussian process can be used
to obtain X(), u

1
, u

2
) [1]. If X is de"ned by equation (14), X(), u

1
, u

2
) can also be

obtained by integrating this equation for Z equal to its sample value, Z(u
1
), and

a sample path, >(), u
2
), of >. In this approach, the previous step is not needed.

Additional sample paths of X can be obtained by repeating the above steps as many times
as needed. The ensemble of these samples has the required statistics.

As stated previously, the conditional process X D Z(u
1
) is Gaussian but X is not

a Gaussian process. The above Monte Carlo simulation algorithm also shows that X is not
an ergodic process because its sample and ensemble statistics di!er.

4. NUMERICAL EXAMPLES

Four examples are presented to demonstrate the calibration of conditional Gaussian
models to target properties and the use of these models in Monte Carlo simulation. The
examples include non-Gaussian random variable and stochastic process.

Example 1. Let

X"

d
+
i/1

Z
i
>

i
(17)

be a real-valued random variable, where >
i
are independent Gaussian variables with mean

zero and variance one. The coe$cients, Z
i
, in the de"nition of X are independent random

variables. There is no relationship between the collection of random variables>
i
and Z

i
. Let

Z"(Z
1
,2, Z

d
). The conditional variable X DZ follows a Gaussian distribution with the

"rst four moments

E[X DZ]"
d
+
i/1

Z
i
E[>

i
]"0,

E[X2 DZ]"
d
+

i, j/1

Z
i
Z

j
E[>

i
>

j
]"

d
+
i/1

Z2
i
,
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E[X3 DZ]"
d
+

i, j,k/1

Z
i
Z

j
Z

k
E[>

i
>

j
>

k
]"0,

E[X4 DZ]"
d
+

i, j,k, l/1

Z
i
Z

j
Z

k
Z

l
E[>

i
>
j
>
k
>
l
]

"

d
+

i, j,k, l/1

Z
i
Z

j
Z

k
Z

l
(d

ij
d
kl
#d

ik
d
jl
#d

il
d
jk
)"3

d
+

i,j/1

Z2
i
Z2

j
. (18)

The fourth order moment could have been written directly because X DZ is a Gaussian
random variable with mean zero and variance E[X2 DZ]"+d

i/1
Z2

i
, so that

E[X4 D Z]"3(E[X2 DZ])2.
The "rst four moments of X,

E[X]"E[E[X D Z]N"0, E[X2]"EME[X2 DZ]N"
d
+
i/1

E[Z2
i
],

E[X3]"EME[X3 D Z]N"0,

E[X4]"EME[X4 D Z]N"3
d
+

i,j/1

E[Z2
i
Z2

j
]"3 A

d
+
i/1

E[Z4
i
]#

d
+

i, j/1; iOj

E[Z2
i
]E[Z2

j
]B (19)

result from equation (18) by eliminating the condition on Z. The kurtosis coe$cient,

c
4,x

"

E[X4]

(E[X2])2
"3A1#

+d
i/1

(E[Z4
i
]!(E[Z2

i
])2)

+d
i, j/1

E[Z2
i
]E[Z2

j
] B (20)

of X is larger than three because (E[Z2
i
])2)E[Z4

i
] by the Cauchy}Schwarz inequality.

Hence, the model can generate only random variables with symmetric densities about zero
and heavier tails than the Gaussian distribution.

Take, for example, Z
i
to be independent random variables following an exponential

distribution with parameter j'0. The moments of Z
1

are E[Zq
1
]"C(q#1)/jq,

q"1, 2,2, [6] so that E[X2]"2d/j2, E[X4]"12d (5#d)/j4, and

c
4,x

"

E[X4]

(E[X2])2
"3(1#5/d). (21)

The kurtosis coe$cient decreases with d from 18 for d"1 to 3 for dPR. The limit,
lim

d?=
c
4,x

"3, is consistent with the central limit theorem. Figure 1 shows a histogram of
a scaled version of X with mean zero and variance one for d"10, j"1, and the density of
the standard Gaussian variable. The histogram, based on 10 000 samples of X, has heavier
tails than the Gaussian density. The estimated and exact kurtosis coe$cients of X are
4)7841 and 4)5, respectively, while this coe$cient is 3 for a Gaussian variable. The
generation of samples of X is based on the Monte Carlo algorithm outlined in the previous
section. First, a sample, Z(u

1
), of Z has been generated. Second, the expression of X D Z(u

1
)

has been determined. Third, a sample, X(u
1
, u

2
), of X has been obtained from the

expression of X D Z(u
1
) and a sample, (>

1
(u

2
),2,>

d
(u

2
)) of (>

1
,2, >

d
). These steps have

been repeated 10 000 times to generate as many as 10 000 samples of X.
If Z

i
's are independent gamma random variables with parameters (k, j) and moments

E[Zq
1
]"C(k#q)/(C(k)jq), q"1, 2,2, then X has variance C(k#2)d/(C(k)j2) and kurtosis



Figure 1. Histogram of X and the density of the standard Gaussian variable.
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coe$cient

c
4,x

"3A1#
C(k)C(k#4)!C(k#2)2

dC(k#2)2 B. (22)

As dPR, c
4,x

converges to 3 for each k indicating that X may approach a Gaussian
random variable.

Suppose that the model of equation (17) needs to be calibrated to a random variable with
mean k"10, variance p2"5, and kurtosis coe$cient c

4
"6 following a symmetric density

about k. The target mean can be matched by taking X"k#+d
i/1

Z
i
>

i
rather than its

de"nition in equation (17). If Z
i
are taken to be exponential variables, equation (21) implies

d"5 so that j"J2 results from equation (19) and the value of the target variance. If the
target kurtosis coe$cient is assumed to be c

4
"9, equation (21) gives d"2)5 so that there is

no solution because d must be a positive integer. Two options are possible to overcome this
di$culty: assume correlation among the random variables Z

i
or continue to assume

independence among Z
i
's but consider other distributions for these variables. The second

option is illustrated.
If Z

i
's are independent gamma variables with parameters (k, j), three parameters are

available to calibrate the target moments so that one of these parameters can be selected
arbitrarily, for example, take d"10. The condition that the target kurtosis be matched, that
is, c

4,x
given by equation (22) be equal to c

4
, gives k"0)53 and 0)278 for c

4
"6 and

9 respectively. The requirement that the variance of X coincide with the target variance
provides the values of the other parameter of the gamma distribution, j"0)6367 for c

4
"6

and j"0)4215 for c
4
"9. Similar calculations give k"1 and j"J2 for d"5 and c

4
"6,

consistent with a previous result for exponential Z
i
's.

Example 2. Suppose that the target stationary process is a band-limited white noise with
mean zero, one-sided spectral density,

g(l)"g
0
1
*0,l6 )(l), 0)l(l6 (23)
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and a marginal density symmetric about zero with kurtosis c
4
"5, where 1

A
(m)"1 for m3A

and 1
A
(m)"0 for m NA. The objective is to calibrate a conditional non-Gaussian model to

this target process.
Consider the random spectral density function

G(l, Z)"
d
+
i/1

Z
i
1
*(i~1)Dl, iDl) (l), (24)

where d*1 is an integer, Dl"l6 /d is the size of a uniform partition of the frequency band of
the target process, and the co-ordinates, Z

i
, of the Rd-valued random variable Z are such

that E[Z
i
]"g

0
. The conditional Gaussian process, X, given by equation (13) with the

random spectral density in equation (24) matches the second moment properties of the
target process. The fourth moment of X is given by equation (10) with q"2. To match the
target fourth moment, it is necessary to specify higher order moments of Z in addition to its
mean.

Suppose, for example, the dimension, d, of Z coincides with the number of harmonics, n,
in the approximate representation, X

n
, of X [equation (13)] and that

Z
i
"p=#=

i
, i"1,2, d"n,

where = and =
i
are independent exponential random variables with mean 1/j and p is

a real number that needs to be determined. The condition E[Z
i
]"g

0
implied p/j#1/j"g

0
or j"(p#1)/g

0
. The conditional second and fourth moments of X

n
are

E[X
n
(t)2 DZ]"Dl

d
+
i/1

Z
i
, E[X

n
(t)4 DZ]"(Dl)2

d
+

i, j/1

Z
i
Z

j
,

so that

E[X
n
(t)2]"Dl

d
+
i/1

g
0
"g

0
l6 "(p#1)l6 /j, E[X

n
(t)4]"(Dl)2

d
+

i,j/1

E[Z
i
Z

j
],

where

E[Z
i
Z

j
]"G

E[(p=#=
i
)2]"(2p2#2p#2)/j2 if i"j,

E[(p=#=
i
) (p=#=

j
)]"(2p2#2p#1)/j2 if iOj

for the selected model of Z. These expectations show that the correlation coe$cient

o"
E[(Z

1
!E[Z

1
])(Z

2
!E[Z

2
])]

E[(Z
1
!E[Z

1
])2]

"

p2

p2#1

of the equally correlated random variables Z
i
is zero for p"0 and approaches one as

pPR. The fourth moment of X
n
(t) is

E[X
n
(t)4]"(Dl)2 C

d
+
i/1

(2p2#2p#2)/j2#
d
+

i, j/1; iOj

(2p2#2p#1)/j2D
"

(Dl)2
j2

(2p2n2#2pn2#n2!n)"A
l6
jB

2
(2p2#2p#1!1/n),



Figure 2. Five sample paths of X
n
.
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so that

c
4,Xn

"3
E[X

n
(t)4]

(E[X
n
(t)2])2

"3
2p2#2p#1!1/n

(p#1)2
(25)

gives the kurtosis coe$cient of X
n
(t). The range of this coe$cient is (3, 6).

The calibration of the conditional process X
n
involves two steps. First, the value of p can

be determined from the condition that c
4,Xn

is equal to the target kurtosis, c
4
"5. This

condition gives p"4)5 for a relatively large value of n. Second, E[Z
i
]"g

0
implies

(p#1)/j"g
0

or j"(p#1)/g
0
. Figure 2 shows "ve sample paths of X

n
for n"200

calibrated to a target process with spectral density function given by equation (23) for l6 "2
and c

4
"5.

Example 3. Suppose that

g(l)"
g
0

(l2!l2
0
)2#(2l

0
fl)2

, l*0 (26)

is the target one-sided spectral density function, where l
0
'0, g

0
'0, and f3(0, 1). The

approach of the previous example can be extended simply to account for the dependence of
the spectral values on frequency.
An alternative approach is considered here. It is based on an approximation

g8 (l)"
d
+
i/1

a
i
1
*0,=)

(l)/A
l!l

i
p
i
B, l*0 (27)

of g, where /(m)"exp(!0)5m2)/J2n provides a collection of base functions, a
i
are the yet

undetermined constants, and p
i
, l

i
'0 are the speci"ed constants. The unspeci"ed

constants a
i
can be determined from the condition that the error

e"P
=

0

(g(l)!g8 (l))2 dl (28)



Figure 3. Target and approximate spectral density functions.
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be minimized. The condition gives the system of linear equations

d
+
i/1
CP

=

0

/A
l!l

i
p
i
B/A

l!l
j

p
j
BD a

i
"P

=

0

g (l)/A
l!l

j
p
j
B, j"1,2, d (29)

for the unknown constants a
i
.

The top solid line in Figure 3 is the target spectral density g(l) for f"0)3, l
0
"1, and

g
0
"4fl3

0
/n in the range [0, 2]. The other solid lines in the "gure are the functions

a
i
1
*0,=)

(l)/((l!l
i
)/p

i
) for d"10, frequencies, l

i
, equal to 0)01, 0)2, 0)5, 0)7, 0)9, 1, 1)1, 1)3,

1)5, and 1)7 for i"1,2, d, p
1
"0)3, and p

i
"0)1 for i*2. The coe$cients, a

i
are 0)3434,

0)9321, 1)2485, 1)6578, 2)4667, 0)1830, 1)4841, 0)6433, 0)2832, and 0)1957 for i"1, 2, d. The
"gure also shows with a dotted line the approximate spectral density, g8 , in equation (27).
More accurate approximations can be obtained by re"ning the representation of the target
spectral density given by equation (27).

Consider the random spectral density

GI (l, Z)"
d
+
i/1

Z
i
1
*0,=)

(l)/A
l!l

i
p
i
B, l*0 (30)

depending on an Rd-valued random variable Z"(Z
1
,2, Z

d
) such that E[Z

i
]"a

i
, where

a
i
are coe$cients in the approximate representation of the target spectral density [equation

(27)]. The process de"ned by equations (3) and (5) with the random spectral density, G, given
by equation (30) matches the target second moment properties. The second order and
higher order moments of Z need to be selected such that the marginal distribution of X or at
least some of the higher order moments of X approximate satisfactorily the corresponding
target properties.

Example 4. Let X be the output of equation (14) with

L"

d2

dt2
#2Z

1
Z

2

d

dt
#Z2

2
(31)
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given by equation (15) for m"3, Z"(Z
1
, Z

2
), Z

1
3 (0, 1), Z

2
'0, m

0
(Z)"1, m

1
(Z)"2Z

1
Z

2
,

m
2
(Z)"Z2

2
, and > a Gaussian white noise with mean zero and a one-sided spectral density

of intensity g
0
"1/n

0
. The output, X(t) D Z, is a stationary Gaussian process with mean zero,

one-sided spectral density

G(l, Z)"
g
0

(l2!Z2
2
)2#(2Z

1
Z

2
l)2

, l*0 (32)

and covariance function

E[X(t)X(t#q) D Z]"
ng

0
2Z

1
Z3

2

e~Z1Z2qCcos(=q)#
Z

1
Z

2
=

sin(=q)D , (33)

where="Z
2
J1!Z2

1
and q*0 [5]. The marginal distribution of X is given by

F
X(t)

(x)"P
=

0

dz
1 P

1

0

dz
2
U(xJ4z

1
z
2
) , (34)

where U(m)":m
~=

/(u) du .
The selection of the properties of Z such that X has speci"ed second moment properties

and marginal distribution is less simple than in the previous case. For example, suppose that
the target one-sided spectral density is given by equation (26). The probability law of
Z needs to be determined such that the condition E[G(l, Z)]"g (l) is satis"ed for each
l*0. Setting E[Z

1
]"f and E[Z

2
]"l

0
is not a solution because G(l, Z) is a non-linear

function of Z. Iteration is needed to "nd moments of Z such that X has the desired second
moment properties.

Simple results are possible if X is slightly non-Gaussian so that the random coe$cients of
the "lter can be represented by Z"l#eR, where E[Z]"l, e denotes a small parameter,
and R is the random vector with mean zero. The "rst order approximation of G(l, Z) is
given by

G(l, Z)KG(l, l)#e
d
+
i/1

h
i
(l) R

i
, (35)

where h
i
(l) is the partial derivative LG(l, Z)/LZ

i
evaluated at Z"l . If the mean value, l, of

Z is equal to the corresponding parameters in the target spectral density, that is, E[Z
1
]"f

and E[Z
2
]"l

0
, the approximate expectation of G(l, Z) coincides with the target spectral

density. A similar approximation can be developed for the marginal density of X. The
approximation of equation (35) provides an alternative to equation (13). For example, the
approximation of this equation to the order e is

X
n
(t)K

n
+
k/1

Ja
k
Dl [A

k
cos(l

k
t)#B

k
sin(l

k
t)]

#

e
2

n
+
k/1

JDl/a
k A

d
+
i/1

h
i
(l

k
, l)R

iB [A
k
cos(l

k
t)#B

k
sin(l

k
t)], (36)

where a
k
"G(l

k
, l). The approximation is based on the observation that the function

(a#eb)1@2 can be approximated by a1@2#0)5eb/a1@2 to the order e. The term of order one in
equation (36) is a Gaussian process with the target second moment properties and the term
of order e is a non-Gaussian process representing a correlation term.
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5. COMMENTS

A new model has been proposed to represent non-Gaussian stationary processes and
develop Monte Carlo simulation algorithms for generating sample paths of non-Gaussian
processes. The model is based on a class of non-Gaussian processes, the class of conditional
Gaussian processes. Two representations are considered for these processes. The "rst
representation is based on a randomized version of the classical spectral density function.
The second representation uses the output of a linear "lter with random coe$cients
subjected to Gaussian noise to de"ne conditional Gaussian processes. The proposed model,
its representations, and corresponding Monte Carlo simulation algorithms have been
illustrated by examples involving non-Gaussian random variables and processes. It was
shown that the proposed model can match any second moment properties but, generally,
can only "t approximately a speci"ed marginal distribution.
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